AGRICULTURAL AND FOOD CHEMISTRY

Design, Synthesis, and Quantitative Structure–Activity Relationship Study of Herbicidal Analogues of Pyrazolo[5,1-*d*][1,2,3,5]tetrazin-4(3*H*)ones

You-quan Zhu, Chao Wu, Hua-bin Li, Xiao-mao Zou,* Xue-kai Si, Fang-zhong Hu, and Hua-zheng Yang*

State Key Laboratory of Elemento-organic Chemistry, Research Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

A series of pyrazolo[5,1-*d*][1,2,3,5]tetrazin-4(3*H*)one derivatives were designed, synthesized, and evaluated for their herbicidal activities where some of these compounds provided >80% control of *Brassica campestris* at 10 μ g/mL. Quantitative structure—activity relationship studies were performed on these compounds using physicochemical parameters (electronic, Verloop, or hydrophobic) as independent parameters and herbicidal activity as a dependent parameter, where herbicidal activity correlated best (r > 0.8) with physicochemical parameters in this set of molecules. The herbicidal activity against *B. campestris* was mainly affected by the molar refractivity (MR) for R¹, Taft (Es_o) for R² or R⁶, Verloop (L_m) for R³ or R⁵, and electronic parameters (Hammett's constants) for R⁴. The optimal MR for herbicidal activity is 0.95. The herbicidal activity against *Echinochloa crus-galli* was mainly related with the substituents' hydrophobic parameter. The optimal π parameters for R₁ and R₄ for herbicidal activity are 0.72 and 0.68, respectively. In general, these compounds showed greater herbicidal activity toward *B. campestris* than *E. crus-galli*.

KEYWORDS: Pyrazolo[5,1-d][1,2,3,5]tetrazin-4(3H)one; hydrophobic; herbicidal activity; quantitative structure-activity relationship (QSAR)

INTRODUCTION

Tetrazinone compounds represented an important class of heterocyclic compounds. They displayed a wide range of biological and pharmaceutical activities (1, 2) and have attracted considerable attention. For example, mitozolomide A and temozolomide **B** (Figure 1) exhibited outstanding antineoplastic activity and drew attention to azolotetrazine systems. For the sake of finding valuable herbicidal candidates, the imidazotetrazinone moiety was modified into pyrazolotetrazinone in our previous report and some of them provided 50-66% control of Brassica campestris at 200 μ g/mL (3). It was also noticed that many compounds, containing the moiety of polysubstituted benzene ring, exhibited excellent inhibition activity against protoporphyrinogen-IX oxidase (4) and that the structure unit was crucial for their herbicidal activity. To find potent lead compounds, the compound C (Figure 1) was designed and synthesized.

At present, quantitative structure—activity relationships (QSAR), an important area of chemometrics, are widely utilized to study the relationship between chemical structures and biological or other functional activities. QSAR has become increasingly helpful in understanding many aspects of chemical—biological interactions in drug and pesticide research as well as in many other areas (5). The other objective of this study was to further understand the QSAR for R^1-R^6 through preparing a series of **C** (Figure 1 and Table 1).

MATERIALS AND METHODS

Synthetic Procedures. Proton NMR spectra were obtained at 300 MHz using a Bruker AC-P300 spectrometer in $CDCl_3$ solution with tetramethylsilane as an internal standard. Chemical shift values (δ) are given in ppm. Elemental analyses were determined on a Yanaca CHN Corder MT-3 elemental analyzer. Melting points were taken on a Thomas-Hoover melting point apparatus and are uncorrected. Solvents were dried by standard methods and distilled prior to use. Yields were not optimized.

General Synthetic Procedures for Diazonium Inner Salt (E) and Aryl Isocyanate (G). Compound E (Scheme 1) was synthesized as the literature described (3, 6). Compound G was synthesized as the literature described (7). They were identified by ¹H NMR spectroscopy.

General Synthetic Procedure for Compound C (3). The mixture of 2 mmol of E and 2 mmol of aryl isocyanate G in 5 mL of dichloromethane was stirred for 40–48 h at room temperature. After the reaction was completed as monitored by thin-layer chromatography, the solvent was removed in vacuo. The crude product was purified by flash column chromatography on silica gel, using ethyl acetate– petroleum ether (V/V = 3:1) as the eluant to afford the pure target product. The melting points, yields, and elemental analyses of compounds C1–28 are listed in Tables 1 and 2, and their ¹H NMR are listed in Table 3.

^{*} To whom correspondence should be addressed. Tel: +86-22-23503799. Fax: +86-22-23503627. E-mail: nk_yanghz@126.com.

Figure 1. Chemical structures of A, B, and C.

Table 1. Melting Points and Yields of Compounds C1-28

					-			yield	mp
compd	R ¹	R ²	R ³	R ⁴	R⁵	R ⁶	appearance	(%)	(°C)
C1	CH₃S	F	Н	CI	propynyloxy	Н	yellow	34.3	132–134
C2	CF ₃	F	Н	CI	propynyloxy	Н	white	33.7	117–119
C3	CH₃	F	Н	CI	allyloxy	Н	yellow	77.2	122-123
C4	CH₃S	F	Н	CI	allyloxy	Н	yellow	60.8	129-130
C5	CF ₃	F	Н	CI	allyloxy	Н	white	47.6	105-106
C6	CH₃	F	Н	CI	n-propoxy	Н	white	39.7	103-105
C7	CH₃S	F	Н	CI	n-propoxy	Н	yellow	60.5	130–131
C8	CF_3	F	Н	CI	n-propoxy	Н	white	32.3	110–111
C9	CH₃S	F	Н	CI	<i>i</i> -propoxy	Н	yellow	62.3	126–128
C10	CH₃S	Н	CF_3	Н	Н	Н	yellow	85.1	145–146
C11	CF_3	Н	CF_3	Н	Н	Н	white	62.9	124–125
C12	CH₃	CF_3	Н	Н	Н	Н	white	76.2	107-108
C13	CH₃S	CF ₃	Н	Н	Н	Н	yellow	77.6	144–145
C14	CF ₃	CF ₃	Н	Н	Н	Н	yellow	58.3	
							liquid		
C15	CH₃	Н	Н	CF ₃	Н	Н	yellow	73.5	134–136
C16	CH₃S	Н	Н	CF_3	Н	Н	yellow	70.1	150–151
C17	CF₃	Н	Н	CF ₃	Н	Н	yellow	66.5	133–134
C18	CH₃	CF ₃	Н	CI	Н	Н	white	84.6	149–150
C19	CF ₃	CF₃	Н	CI	Н	Н	white	32.9	110–111
C20	CH₃	CI	Н	Н	CF₃	Н	white	79.7	127–129
C21	CH₃S	CI	Н	Н	CF₃	Н	white	78.4	134–135
C22	CF_3	CI	Н	Н	CF₃	Н	white	48.3	116–118
C23	CH₃	Н	CF_3	CI	Н	Н	white	84.6	130–132
C24	CH₃S	Н	CF_3	CI	Н	Н	yellow	94.5	139–140
C25	CH₃	CI	Н	CF ₃	Н	CI	yellow	32.1	90–92
C26	CH₃S	CI	Н	CF ₃	Н	CI	yellow	49.1	88–90
C27	CF_3	CI	Н	CF_3	Н	CI	yellow	32.6	78–80
C28	CE ₂	н	CE ₂	CL	н	н	vellow	44	108-109

Scheme 1

Bioassays. The herbicidal activities of the target compounds (C1–28) were determined with *B. campestris* L. and *Echinochloa crus-galli* L. Beauv as samples of annual dicotyledonous and monocotyledonous plants, respectively, using a previously reported procedure (8). For all of the bioassay tests, each treatment was repeated three times.

Treatment. The emulsions of purified compounds were prepared by dissolving them in $100 \,\mu\text{L}$ of *N*,*N*-dimethylformamide with the addition of 2 μL of Tween 20. The mixture of the same amount of water, *N*,*N*-dimethylformamide, and Tween 20 was used as control.

Inhibition of the Root-Growth of Rape (B. campestris L.). Rape seeds were soaked in distilled water for 4 h before being placed on a filter paper in a 6 cm Petri plate, to which 2 mL of inhibitor solution had been added in advance. Usually, 15 seeds were used on each plate. The plate was placed in a dark room and allowed to germinate for 65

Table 2. Elemental Analysis of Compounds C1-28

	elemental analysis (%, calcd)						
compd	С	Н	N				
C1	46.44 (46.63)	3.10 (2.99)	15.90 (16.00)				
C2	44.37 (44.41)	2.28 (2.19)	15.21 (15.23)				
C3	49.95 (50.07)	3.87 (3.71)	17.15 (17.17)				
C4	46.30 (46.42)	3.46 (3.44)	15.80 (15.92)				
C5	44.11 (44.22)	2.75 (2.62)	14.96 (15.17)				
C6	50.05 (49.82)	4.14 (4.18)	16.98 (17.09)				
C7	46.16 (46.21)	3.72 (3.88)	16.03 (15.85)				
C8	44.09 (44.03)	3.08 (3.04)	15.26 (15.10)				
C9	46.27 (46.21)	3.74 (3.88)	15.78 (15.85)				
C10	44.90 (45.11)	3.11 (3.03)	17.56 (17.54)				
C11	42.60 (42.77)	2.33 (2.15)	16.40 (16.63)				
C12	49.12 (49.05)	3.21 (3.29)	19.18 (19.07)				
C13	44.95 (45.11)	2.90 (3.03)	17.44 (17.54)				
C14	42.54 (42.77)	2.38 (2.15)	16.37 (16.63)				
C15	49.02 (49.05)	3.40 (3.29)	19.22 (19.07)				
C16	45.34 (45.11)	3.13 (3.03)	17.43 (17.54)				
C17	42.50 (42.77)	2.19 (2.15)	16.68 (16.63)				
C18	45.01 (44.85)	2.72 (2.76)	17.60 (17.43)				
C19	39.28 (39.53)	1.87 (1.77)	15.54 (15.37)				
C20	44.74 (44.85)	2.73 (2.76)	17.56 (17.43)				
C21	41.68 (41.53)	2.54 (2.56)	16.18 (16.14)				
C22	39.40 (39.53)	1.64 (1.77)	15.49 (15.37)				
C23	44.72 (44.85)	2.83 (2.76)	17.56 (17.45)				
C24	41.48 (41.53)	2.50 (2.56)	16.34 (16.14)				
C25	39.59 (39.53)	1.65 (1.77)	15.38 (15.37)				
C26	41.38 (41.30)	2.46 (2.31)	16.09 (16.06)				
C27	36.90 (36.76)	1.51 (1.44)	14.03 (14.29)				
C28	39.59 (39.53)	1.65 (1.77)	15.48 (15.37)				

h at 28 (± 1) °C. The lengths of 10 rape roots selected from each plate were measured, and the means were calculated. The percentage inhibition was used to describe the control efficiency of the compounds. The herbicidal activity was summarized in **Table 4**.

Inhibition of the Seedling Growth of Barnyard Grass [E. crus-galli (L.) Beauv]. Ten E. crus-galli seeds were placed into a 50 mL cup covered with a layer of glass beads and a piece of filter paper at the bottom, to which 5 mL of inhibitor solution had been added in advance. The cup was placed in a bright room, and the seeds were allowed to germinate for 65 h at 28 (\pm 1) °C. The heights of the above-ground parts of the seedlings in each cup were measured, and the means were calculated. The percentage inhibition was used to describe the control efficiency of the compounds. The herbicidal activity is summarized in **Table 4**.

RESULTS AND DISCUSSION

Preparations. The syntheses of **E**, **G**, and **C** have been reported (3, 6, 7) (**Scheme 1**). The diazotization of compound **D** using nitrous acid at 0-5 °C followed by neutralization with saturated aqueous sodium carbonate gave 5-diazo-4-ethoxycarbonyl-1H-pyrazole **E** (3, 6). **G** was synthesized as the literature described (7) by reaction of triphosgene with aromatic amine. The target molecules **C**, described in **Table 1**, were obtained by the cycloaddition of **E** with aryl isocyanate **G** in anhydrous CH₂Cl₂ at room temperature.

QSAR Analysis. Different substituents were introduced into the pyrazole and benzene rings of target products C. Their herbicidal activities were given in Table 4.

By replacing the methylsulfonyl group (R^1) of related compounds of ref 3 by methyl, methylthio, or trifluoromethyl

Table 3	3. ¹ H	NMR	of	Compounds	C1-28
---------	--------------------------	-----	----	-----------	-------

compd	1 H NMR (CDCl ₃), δ
C1	1.46 (t, 3H, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{3}$), 2.59 (s, 1H, $-C \equiv$ H), 2.71 (s, 3H, $-SCH_{3}$), 4.51 (q, 2H, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{3}$ (d, 2H, ${}^{2}CH_{2} \equiv$ H), 7.29 (d, 1H, ${}^{3}J_{HH} = 6.0$ Hz, Ar, H), 7.43 (d, 1H, ${}^{3}J_{HH} = 7.2$ Hz, Ar, H)
C2	1.46 (t, 3H, ${}^{3}_{JHH} = 7.2 \text{ Hz}, -CH_{2}CH_{3}$), 2.60 (s, 1H, $-C \equiv H$), 4.53 (q, 2H, ${}^{3}_{JHH} = 7.2 \text{ Hz}, -CH_{2}CH_{3}$),
C3	4.82 (s, 2H, − <i>CH</i> ₂ C≡H), 7.30 (d, 1H, ${}^{3}J_{HH}$ = 6.3 Hz, Ar–H), 7.46 (d, 1H, ${}^{3}J_{HH}$ = 9.0 Hz, Ar–H) 1.46 (t, 3H, ${}^{3}J_{HH}$ = 7.2 Hz, − <i>C</i> H ₂ <i>C</i> H ₃), 2.76 (s, 3H, − <i>C</i> H ₃), 4.50 (q, 2H, ${}^{3}J_{HH}$ = 7.2 Hz, − <i>C</i> H ₂ CH ₃),
	4.63 (m, 2H, $-CH_2CH=CH_2$), 5.37 (m, 2H, $-CH_2CH=CH_2$), 6.03 (m, 1H, $-CH_2CH=CH_2$), 7.08 (d, 1H, 3), $-c$, 6, 2 Hz, Ar, H), 7.41 (d, 1H, 3), $-c$, 0, Hz, Ar, H)
C4	1.46 (t, 3H, ${}^{3}J_{HH} = 7.2 \text{ Hz}, -CH_{2}CH_{3}$), 2.71 (s, 3H, -SCH ₃), 4.50 (q, 2H, ${}^{3}J_{HH} = 7.2 \text{ Hz}, -CH_{2}CH_{3}$),
	4.63 (m, 2H, $-CH_2CH=CH_2$), 5.41 (m, 2H, $-CH_2CH=CH_2$), 6.04 (m, 1H, $-CH_2CH=CH_2$), 7.08 (d, 1H, $^3h_{11}=6.0$ Hz, $Ar=H$), 7.42 (d, 1H, $^3h_{11}=9.0$ Hz, $Ar=H$)
C5	1.46 (t, 3H, ${}^{3}J_{HH} = 6.9$ Hz, $-CH_{2}CH_{3}$), 4.53 (q, 2H, ${}^{3}J_{HH} = 6.9$ Hz, $-CH_{2}CH_{3}$), 4.64 (m, 2H, $-CH_{2}CH=CH_{2}$),
	5.43 (m, 2H, –CH ₂ CH= <i>CH</i> ₂), 6.05 (m, 1H, –CH ₂ <i>CH</i> =CH ₂), 7.07 (d, 1H, ³ <i>J</i> _{HH} = 6.3 Hz, Ar–H), 7.44 (d, 1H, ³ <i>J</i> _{HH} = 9.0 Hz, Ar–H)
C6	1.07 (t, 3H, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{2}CH_{3}$), 1.45 (t, 3H, ${}^{3}J_{HH} = 7.2$ Hz, $-CO_{2}CH_{2}CH_{3}$), 1.87 (m, 2H,
	$J_{HH} = 7.2 \text{ Hz}, -CH_2CH_2CH_3), 2.75 (S, SH, -CH_3), 3.96 (L, 2H, J_{HH} = 6.6 \text{ Hz}, -CH_2CH_2CH_3), 4.49 (q, 2H, J_{HH} = 7.2 \text{ Hz}, -CO_2CH_2CH_3), 7.04 (d, 1H, J_{HH} = 7.2 \text{ Hz}, Ar-H), 7.39 (d, 1H, J_{HH} = 7.2 \text{ Hz}, -CO_2CH_2CH_3), 7.04 (d, 2H, J_{HH} = 7.2 \text{ Hz}, Ar-H), 7.39 (d, 2H, J_{HH} = 7.2 \text{ Hz}, -CO_2CH_2CH_3), 7.04 (d, 2H, J_{HH} = 7.2 \text{ Hz}, Ar-H), 7.39 (d, 2H, J_{HH} = 7.2 \text{ Hz}, -CO_2CH_2CH_3), 7.04 (d, 2H, J_{HH} = 7.2 \text{ Hz}, Ar-H), 7.39 (d, 2H, J_{HH} = 7.2 \text{ Hz}, -CO_2CH_2CH_3), 7.04 (d, 2H, J_{HH} = 7.2 \text{ Hz}, Ar-H), 7.39$
C7	${}^{3}J_{HH} = 9.2$ Hz, Ar–H) 1 07 (t 3H ${}^{3}h_{HH} = 7.2$ Hz –CH-CH-CH-CH-2 (t 3H ${}^{3}h_{HH} = 7.2$ Hz –CO-2 (CH-2 (Hz) 1.88 (m. 2H
	${}^{3}J_{HH} = 6.8 \text{ Hz}, -CH_{2}CH_{2}CH_{3}), 2.70 (s, 3H, -SCH_{3}), 3.98 (t, 2H, {}^{3}J_{HH} = 6.8 \text{ Hz}, -CH_{2}CH_{2}CH_{3}),$
	4.50 (q, 2H, ³ <i>J</i> _{HH} = 7.2 Hz, –CO ₂ <i>CH</i> ₂ CH ₃), 7.04 (d, 1H, ³ <i>J</i> _{HH} = 6.0 Hz, Ar–H), 7.40 (d, 1H, ³ <i>J</i> _{HH} = 8.8 Hz, Ar–H)
C8	1.08 (t, 3H, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{2}CH_{3}$), 1.45 (t, 3H, ${}^{3}J_{HH} = 6.8$ Hz, $-CO_{2}CH_{2}CH_{3}$), 1.88 (m, 2H,
	[°] J _{HH} = 6.8 HZ,CH ₂ CH ₂ CH ₃), 3.99 (t, 2H, [°] J _{HH} = 6.4 HZ,CH ₂ CH ₂ CH ₂ CH ₃), 4.52 (q, 2H, ³ J _{HH} = 7.2 HZ,CO ₂ CH ₂ CH ₃), 7.04 (d, 1H, ³ J _{HH} = 6.4 HZ, Ar-H), 7.42 (d, 1H, ³ J _{HH} = 8.8 HZ, Ar-H)
C9	1.40 (d, 6H, ${}^{3}J_{HH} = 7.2$ Hz, $-CH(CH_{3})_{2}$), 1.45 (t, 3H, ${}^{3}J_{HH} = 7.2$ Hz, $-CO_{2}CH_{2}CH_{3}$), 2.70 (s, 3H, $-SCH_{3}$), 4.50 (c, 2H ${}^{3}J_{HH} = 7.2$ Hz, $-CO_{2}CH_{2}CH_{3}$), 2.70 (s, 3H, $-SCH_{3}$),
	Ar-H), 7.39 (d, 1H, $^{3}J_{HH} = 8.8$ Hz, Ar-H)
C10	1.46 (t, 3H, ³ <i>J</i> _{HH} = 7.2 Hz, −CH ₂ <i>CH</i> ₃), 2.72 (s, 3H, −SCH ₃), 4.51 (q, 2H, ³ <i>J</i> _{HH} = 7.2 Hz, − <i>CH</i> ₂ CH ₃), 7.84 (m. 4H, Ar−H)
C11	1.46 (t, 3H, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{3}$), 4.53 (q, 2H, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{3}$), 7.85 (m, 4H, Ar–H)
C12	1.46 (t, 3H, ${}^{\circ}J_{HH} = 7.2$ Hz, $-CH_2CH_3$), 2.76(s, 3H, $-CH_3$), 4.50 (q, 2H, ${}^{\circ}J_{HH} = 7.2$ Hz, $-CH_2CH_3$), 7.75 (m. 4H, Ar–H)
C13	1.46 (t, $3H$, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{3}$), 2.71 (s, $3H$, $-SCH_{3}$), 4.50 (q, $2H$, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{3}$), 7.75 (m, $4H$ Ar, H)
C14	7.73 (m, 4n, Al-n) 1.45 (t, 3H, 3 J _{HH} = 7.2 Hz, -CH ₂ CH ₃), 4.51 (q, 2H, 3 J _{HH} = 7.2 Hz, -CH ₂ CH ₃), 7.77 (m, 4H, Ar-H)
C15	1.46 (t, 3H, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{3}$), 2.76 (s, 3H, $-CH_{3}$), 4.50 (q, 2H, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{3}$), 7.86 (m, 4H, Ar, H)
C16	1.46 (t, 3H, ${}^{3}J_{HH} = 7.2 \text{ Hz}, -CH_{2}CH_{3}$), 2.71 (s, 3H, -SCH ₃), 4.50 (q, 2H, ${}^{3}J_{HH} = 7.2 \text{ Hz}, -CH_{2}CH_{3}$),
C17	7.85 (m, 4H, Ar–H) 1.46 (t, 2H, 3 (m, -7, 2H, - CH, CH), 4.52 (n, 2H, 3 (m, -7, 2H, - CH, CH), 7.97 (m, 4H, Ar, H)
C18	1.45 (t, 3H, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{3}$), 2.75 (s, 3H, $-CH_{3}$), 4.50 (q, 2H, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{3}$),
C10	7.70 (m, 3H, Ar–H) 1.45 (t, 2H, 3 (m, - 7.2 Hz, - CH, CH), 4.52 (a, 2H, 3 (m, - 7.2 Hz, - CH, CH), 7.72 (m, 2H, Ar, H)
C20	1.46 (t, 3H, ${}^{3}J_{HH} = 6.8 \text{ Hz}, -CH_{2}CH_{3}$), 2.76 (s, 3H, $-CH_{3}$), 4.50 (q, 2H, ${}^{3}J_{HH} = 6.8 \text{ Hz}, -CH_{2}CH_{3}$),
C21	7.84 (m, 3H, Ar–H) 1.46 (t, 3H, ³ J _{HH} = 7.2 Hz, –CH ₂ CH ₃), 2.71 (s, 3H, –SCH ₃), 4.50 (q, 2H, ³ J _{HH} = 7.2 Hz, – <i>CH</i> ₂ CH ₃),
C22	7.82 (m, 3H, Ar–H)
C23	1.46 (t, 3H, ${}^{3}J_{HH} = 7.2 \text{ Hz}, -CH_{2}CH_{3}$), 2.75 (s, 3H, $-CH_{3}$), 4.49 (q, 2H, ${}^{3}J_{HH} = 7.2 \text{ Hz}, -CH_{2}CH_{3}$),
C24	7.88 (m, 3H, Ar–H) 1.46 (t, 3H, ³ J _{HH} = 7.2 Hz, –CH ₂ CH ₃), 2.71 (s, 3H, –SCH ₃), 4.50 (q, 2H, ³ J _{HH} = 7.2 Hz, –CH ₂ CH ₃),
C25	7.90 (m, 3H, Ar–H)
UZJ	7.84 (s, 2H, Ar–H)
C26	1.38 (t, 3H, ${}^{3}J_{HH} = 6.8$ Hz, $-CH_{2}CH_{3}$), 2.71 (s, 3H, $-CH_{3}$), 4.38 (q, 2H, ${}^{3}J_{HH} = 7.2$ Hz, $-CH_{2}CH_{3}$), 7.84 (s, 2H, Ar–H)
C27	1.46 (t, 3H, ${}^{3}J_{HH} = 6.8$ Hz, $-CH_2CH_3$), 4.42 (q, 2H, ${}^{3}J_{HH} = 6.8$ Hz, $-CH_2CH_3$), 7.87 (s, 2H, Ar–H)
620	1.45 (t, 511, 5 — 7.2 m², -0m²0m²), 4.35 (y, 2m, 5 — 7.2 m², -0m²0m²), 7.30 (tit, 5m, At-m)

groups, the herbicidal activity was generally improved. When a trifluoromethyl group existed at the meta-position in the benzene ring, most of them (C) showed similar inhibition at 100 and 10 μ g/mL (e.g., C10, C20, C23, C24, and C28) for *B. capestris*. When the substituent at the para-position in benzene ring was chloro- or trifluoromethyl groups, most of the corresponding compounds showed lower herbicidal activity (except C15, C18, and C23). The comparison between C18 and C23 implied that the presence of trifluoromethyl group may have some influence on their metabolism process. It was also observed that introduction of a polysubstituted benzene ring also improved the bioactivity. For example, when R¹, R², R³, R⁴, R⁵, and R⁶ were methyl, hydrogen, trifluoromethyl, chloro, hydrogen, and hydrogen, respectively, the corresponding compound **C23** provided 89% control of *B. campestris* at 10 μ g/ mL. In order to gain insight into structure–activity relationships of compounds **C**, the data were analyzed by a physicochemicalbased QSAR (Hansch) approach using physicochemical parameters as independent and herbicidal activity data (% I) at 100 μ g/mL being converted to log {*I*/[(100 - *I*) × MW]} listed in

Table 4. Herbicidal Activity of Compounds (% I; Concentration, µg/mL)

	B. campestris root test		E. crus-galli cup test		
compd	100	10	100	10	
C1	0	0	32 ± 1	0	
C2	0	0	28 ± 2	0	
C3	0	0	24 ± 2	0	
C4	25 ± 2	0	22 ± 1	0	
C5	2 ± 1	0	16 ± 2	0	
C6	0	0	18 ± 1	0	
C7	2 ± 1	0	12 ± 1	0	
C8	5 ± 1	0	20 ± 1	0	
C9	13 ± 2	0	20 ± 1	0	
C10	37 ± 2	34 ± 2	0	0	
C11	14 ± 2	0	1 ± 1	0	
C12	86 ± 2	5 ± 1	6 ± 2	0	
C13	23 ± 2	0	0	0	
C14	9 ± 1	7 ± 1	9 ± 2	0	
C15	90 ± 2	82 ± 2	10 ± 1	0	
C16	18 ± 1	4 ± 1	22 ± 1	2 ± 1	
C17	2 ± 1	0	18 ± 2	9 ± 1	
C18	63 ± 2	0	14 ± 1	6 ± 1	
C19	0	0	21 ± 2	0	
C20	65 ± 2	61 ± 2	0	0	
C21	13 ± 2	0	11 ± 2	2 ± 1	
C22	10 ± 1	0	2 ± 1	0	
C23	89 ± 2	89 ± 1	4 ± 1	0	
C24	24 ± 1	22 ± 1	26 ± 2	0	
C25	25 ± 2	4 ± 1	22 ± 1	0	
C26	9±1	3 ± 1	28 ± 1	3 ± 2	
C27	22 ± 2	2 ± 1	15 ± 1	0	
C28	14 ± 1	13 ± 2	0	0	

Table 5. Topological and Physicochemical Parameters of Compound ${\bf C}$

compd	(MR-0.95) ²	Eso	$\sigma_{ m p}$	Lm	X1 ^{obs}	X1 ^{calcd}
C1	0.19	-0.46	0.23	6.58		-3.84
C2	0.20	-0.46	0.23	6.58		-4.15
C3	0.15	-0.46	0.23	6.22		-2.55
C4	0.19	-0.46	0.23	6.22	-3.12	-3.79
C5	0.20	-0.46	0.23	6.22	-4.35	-4.10
C6	0.15	-0.46	0.23	6.05		-2.52
C7	0.19	-0.46	0.23	6.05	-4.34	-3.76
C8	0.20	-0.46	0.23	6.05	-3.95	-4.07
C9	0.19	-0.46	0.23	4.80	-3.47	-3.59
C10	0.19	0	0	3.30	-2.83	-2.95
C11	0.20	0	0	3.30	-3.41	-3.26
C12	0.15	-2.40	0	1.00	-1.78	-2.04
C13	0.19	-2.40	0	1.00	-3.13	-3.28
C14	0.20	-2.40	0	1.00	-3.63	-3.59
C15	0.15	0	0.54	1.00	-1.61	-2.09
C16	0.19	0	0.54	1.00	-3.26	-3.33
C17	0.20	0	0.54	1.00	-4.31	-3.65
C18	0.15	-2.40	0.23	1.00	-2.37	-2.34
C19	0.20	-2.40	0.23	1.00		-3.89
C20	0.15	-0.97	0	3.30	-2.34	-1.97
C21	0.19	-0.97	0	3.30	-3.46	-3.21
C22	0.20	-0.97	0	3.30	-3.61	-3.52
C23	0.15	0	0.23	3.30	-1.66	-2.01
C24	0.19	0	0.23	3.30	-3.1	-3.25
C25	0.15	-0.97	0.54	1.00	-3.12	-2.36
C26	0.19	-0.97	0.54	1.00	-3.68	-3.60
C27	0.20	-0.97	0.54	1.00	-3.24	-3.91
C28	0.20	0	0.23	3.30	-3.45	-3.56

Table 5 as dependent parameters. The values of the physicochemical parameters in the study were taken from the literature (9), and multiparameter linear regression analysis was carried out using SYBYL 6.9 (Tripos Inc.).

Variations in the herbicidal activities against *B. campestris* (**Table 5**) were first analyzed. Because the herbicidal activity for C1–3, C6, and C19 was zero, the five target molecules

Figure 2. Relationship between observed and calculated activity by eq 1.

Table 6. Correlation Matrix of the Parameters Used in QSAR Study

	(MR-0.95) ²	Eso	$\sigma_{ m p}$	Lm
(MR-0.95) ²	1.000			
Es₀	0.242	1.000		
σ_{p}	-0.072	0.359	1.000	
L _m	0.325	0.412	-0.295	1.000

were not involved in the following QSAR analysis. Preliminary QSAR analysis showed the molar refractivity $[(MR - 0.95)^2]$ (r = 0.822) for R¹, and the Verloop parameter (L_m) parameter for R⁵ or R³ (r = 0.381), to a certain extent, showed correlation. In the case of di-ortho or di-meta substituents, only the substituent with higher Es_o or L_m values was under consideration. Stepwise regression analysis of different combinations of these parameters were studied, which led to the derivation of eq 1, with the best correlation (r = 0.880).

$$X1 = \log\{I/[(100 - I) \times MW]\}$$

where MW is molecular weight and

$$\begin{aligned} \text{X1} &= 3.419 \ (\pm 00.893) - 31.053 \ (\pm 4.580) \ (\text{MR} - 0.95)^2 + \\ &0.274 \ (\pm 0.137) \ \text{Es}_{\text{o}} - 1.320 \ (\pm 0.519) \ \sigma_{\text{p}} - 0.141 \ (\pm \\ &0.060) \ L_{\text{m}} \ (1) \end{aligned}$$

where n = 23, r = 0.881, s = 0.4135, and F = 15.615.

The analysis indicates that (i) the coefficients of the $(MR - 0.95)^2$ terms meant that the MR for R¹ had an important impact on the herbicidal activity and the optimum value of MR for herbicidal activity was about 0.95 (such as ethynyl group), the compound that showed the highest herbicidal activity; (ii) the presence of bulkier substituents with positive Es_o values at the ortho-position of the benzene ring positively contributed for the activity; (iii) the electronic-donating groups for the para-position in the benzene ring helped to elevate their herbicidal activity; and (iv) for the di-meta substituents (R³ and R⁵), herbicidal activity was mainly affected by the substituent with the higher Verloop parameter (L_m) value. Because the sums of the values at the substituent pairs performed less well than the maximum, this suggested that a steric clash with the tetrazinone carbonyl was important.

The intercorrelation of variable was given in **Table 6**, and the calculated activities for them by eq 1 were in good agreement with the observed activity (**Table 6** and **Figure 2**).

Variations in the herbicidal activities against *E. crus-galli* were also analyzed (**Table 7**). Because the herbicidal activity for **C10**, **C13**, **C20**, and **C28** was zero, the four target molecules were also not involved in the following QSAR analysis. Preliminary QSAR analysis showed the hydrophobic parameter

Table 7. Topological and Physicochemical Parameters of Compound C

						$\Sigma(\pi R^3 +$		
compd	πR^1	$(\pi R^{1})^{2}$	π_{0}	$\pi_{ m p}$	$(\pi_{\rm p})^2$	$\pi R^5 + \pi R^6$)	X2 ^{obs}	X2 ^{calcd}
C1	0.61	0.37	0.14	0.71	0.50	0.10	-2.97	-3.03
C2	0.88	0.77	0.14	0.71	0.50	0.10	-3.07	-3.30
C3	0.56	0.31	0.14	0.71	0.50	0.60	-3.11	-3.43
C4	0.61	0.37	0.14	0.71	0.50	0.60	-3.19	-3.14
C5	0.88	0.77	0.14	0.71	0.50	0.60	-3.38	-3.42
C6	0.56	0.31	0.14	0.71	0.50	1.05	-3.27	-3.54
C7	0.61	0.37	0.14	0.71	0.50	1.05	-3.51	-3.25
C8	0.88	0.77	0.14	0.71	0.50	1.05	-3.27	-3.52
C9	0.61	0.37	0.14	0.71	0.50	0.36	-3.25	-3.09
C10	0.61	0.37	0	0	0	0.88		-4.03
C11	0.88	0.77	0	0	0	0.88	-4.62	-4.30
C12	0.56	0.31	0.88	0	0	0	-3.76	-3.86
C13	0.61	0.37	0.88	0	0	0		-3.82
C14	0.88	0.77	0.88	0	0	0	-3.63	-3.84
C15	0.56	0.31	0	0.88	0.77	0	-3.52	-3.40
C16	0.61	0.37	0	0.88	0.77	0	-3.15	-3.11
C17	0.88	0.77	0	0.88	0.77	0	-3.28	-3.39
C18	0.56	0.31	0.88	0.71	0.50	0	-3.39	-3.08
C19	0.88	0.77	0.88	0.71	0.50	0	-3.23	-3.07
C20	0.56	0.31	0.71	0	0	0.88		-4.31
C21	0.61	0.37	0.71	0	0	0.88	-3.55	-3.82
C22	0.88	0.77	0.71	0	0	0.88	-4.35	-4.09
C23	0.56	0.31	0	0.71	0.50	0.88	-3.95	-3.54
C24	0.61	0.37	0	0.71	0.50	0.88	-3.06	-3.25
C25	0.56	0.31	0.71	0.88	0.77	0.71	-3.19	-3.36
C26	0.61	0.37	0.71	0.88	0.77	0.71	-3.08	-3.07
C27	0.88	0.77	0.71	0.88	0.77	0.71	-3.44	-3.34
C28	0.88	0.77	0	0.71	0.5	0.88		-3.52

 $\Sigma[\pi R^1 + (\pi R^1)^2]$ (r = 0.391) for R^1 , $\Sigma(\pi_P + (\pi_P)^2 (r = 0.721))$ for R^4 , and $\Sigma(\pi R^3 + \pi R^5 + \pi R^6)$ for R^3 , R^5 , and $R^6 (r = 0.253)$, to a certain extent, showed correlation. Stepwise regression analysis of different combinations of these parameters was studied, which led to the derivation of eq 2, with a best correlation (r = 0.844).

$$X2 = \log\{I/[(100 - I) \times MW]\}$$

where MW is molecular weight and

 $X2 = 34.520 (\pm 15.107) \pi R^{1} - 23.985 (\pm 10.389) (\pi R^{1})^{2} + 0.289 (\pm 0.171) \pi_{o} + 2.264 (\pm 0.809) \pi_{P} - 1.663 (\pm 0.958) (\pi_{P})^{2} - 0.230 (\pm 0.135) \sum (\pi R^{3} + \pi R^{5} + \pi R^{6}) - 16.006 (\pm 5.317) (2)$

where n = 24, r = 0.844, s = 0.2524, and F = 6.994.

Equation 2 indicated that the substituent \mathbb{R}^2 positively contributed for the activity while \mathbb{R}^3 , \mathbb{R}^5 , and \mathbb{R}^6 at the benzene ring negatively contributed. The coefficients of the $(\pi\mathbb{R}^1)^2$ and $\pi\mathbb{R}^1$ terms meant that the hydrophobic parameter $(\pi\mathbb{R}^1)$ for \mathbb{R}^1 had an optimum value for **C** and was about 0.72 (such as chloro atom, 0.71). The coefficients of the $(\pi_P)^2$ and π_P terms also meant that the hydrophobic parameter (π_P) for \mathbb{R}^4 had an optimum value for **C** and was about 0.68 [such as CH₂CH₂(1pyrrolidyl), 0.69]. This result showed that when the other conditions were the same and $\pi\mathbb{R}^1$ and π_P were 0.72 and 0.68, respectively, the corresponding compounds had the highest herbicidal activity. The intercorrelation of variable was given in **Table 8**, and the calculated activities for them by eq 2 were in good agreement with the observed activity (**Table 8** and **Figure 3**).

In addition, the selectivity between *E. crus-galli* and *B. campestris* for this kind compounds was studied and led to the derivation of eq 3, with best correlation (r = 0.798) (**Table 9**).

Figure 3. Relationship between observed and calculated activity by eq 2.

Table 8. Correlation Matrix of the Parameters Used in QSAR Study

	πR^1	$(\pi R^1)^2$	π_{0}	$\pi_{ m p}$	$(\pi_p)^2$	$\frac{\sum (\pi R^3 + \pi R^5 + \pi R^6)}{\pi R^5 + \pi R^6}$
πR^1	1.000					
(πR ¹) ²	1.000	1.000				
π_0	0.094	0.098	1.000			
π_{D}	-0.224	-0.225	-0.383	1.000		
$(\pi_{\rm p})^2$	-0.205	-0.205	-0.324	0.977	1.000	
$\Sigma(\pi R^3 +$	-0.048	-0.051	-0.192	-0.079	-0.120	1.000
$\pi R^5 + \pi R^6$)						

Table 9. Topological and Physicochemical Parameters of Compound C

X1 ^{obs}	$\pi_{ m p}$	$(\pi_{\rm p})^2$	$\pi_{ m m}$	X2 ^{obs}	X2 ^{calcd}
-3.12	0.71	0.50	0.60	-3.19	-3.37
-4.35	0.71	0.50	0.60	-3.38	-3.21
-4.34	0.71	0.50	1.05	-3.51	-3.40
-3.95	0.71	0.50	1.05	-3.27	-3.45
-3.47	0.71	0.50	0.36	-3.25	-3.22
-3.41	0	0	0.88	-4.62	-4.10
-1.78	0	0	0.00	-3.76	-3.93
-3.63	0	0	0.00	-3.63	-3.69
-1.61	0.88	0.77	0.00	-3.52	-3.48
-3.26	0.88	0.77	0.00	-3.15	-3.27
-4.31	0.88	0.77	0.00	-3.28	-3.13
-2.37	0.71	0.50	0.00	-3.39	-3.20
-2.34	0.71	0.50	0.00	-3.23	-3.21
-3.46	0	0	0.88	-3.55	-4.10
-3.61	0	0	0.88	-4.35	-4.08
-1.66	0.71	0.50	0.88	-3.95	-3.68
-3.10	0.71	0.50	0.88	-3.06	-3.49
-3.12	0.88	0.77	0.00	-3.19	-3.29
-3.68	0.88	0.77	0.00	-3.08	-3.21
-3.24	0.88	0.77	0.00	-3.44	-3.27
	X1 ^{obs} -3.12 -4.35 -4.34 -3.95 -3.47 -3.47 -3.41 -1.78 -3.63 -1.61 -3.26 -4.31 -2.37 -2.34 -3.461 -1.66 -3.10 -3.12 -3.68 -3.24	$\begin{array}{c cccc} X1^{cbs} & \pi_{\rm p} \\ \hline -3.12 & 0.71 \\ -4.35 & 0.71 \\ -4.34 & 0.71 \\ -3.95 & 0.71 \\ -3.47 & 0.71 \\ -3.47 & 0.71 \\ -3.47 & 0 \\ -1.63 & 0 \\ -1.61 & 0.88 \\ -3.26 & 0.88 \\ -4.31 & 0.88 \\ -2.37 & 0.71 \\ -2.34 & 0.71 \\ -2.34 & 0.71 \\ -3.46 & 0 \\ -3.61 & 0 \\ -1.66 & 0.71 \\ -3.10 & 0.71 \\ -3.12 & 0.88 \\ -3.24 & 0.88 \\ -3.24 & 0.88 \\ \hline \end{array}$	$\begin{array}{c cccc} X1^{\rm obs} & \pi_{\rm p} & (\pi_{\rm p})^2 \\ \hline -3.12 & 0.71 & 0.50 \\ -4.35 & 0.71 & 0.50 \\ -4.34 & 0.71 & 0.50 \\ -3.95 & 0.71 & 0.50 \\ -3.47 & 0.71 & 0.50 \\ -3.47 & 0.71 & 0.50 \\ -3.41 & 0 & 0 \\ -1.78 & 0 & 0 \\ -1.61 & 0.88 & 0.77 \\ -3.26 & 0.88 & 0.77 \\ -4.31 & 0.88 & 0.77 \\ -2.37 & 0.71 & 0.50 \\ -2.34 & 0.71 & 0.50 \\ -2.34 & 0.71 & 0.50 \\ -3.46 & 0 & 0 \\ -3.61 & 0 & 0 \\ -1.66 & 0.71 & 0.50 \\ -3.10 & 0.71 & 0.50 \\ -3.12 & 0.88 & 0.77 \\ -3.26 & 0.88 & 0.77 \\ -3.26 & 0.88 & 0.77 \\ -3.26 & 0.88 & 0.77 \\ -3.24 & 0.88 & 0.77 \\ -3.24 & 0.88 & 0.77 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

When the herbicidal activity against whether *E. crus-galli* or *B. campestris* was zero, the corresponding compound was not included. In the case of di-meta substituents, only the substituent with the larger hydrophobic parameter (π_m) was under consideration.

$$\begin{split} &X2 = -4.166 \ (\pm 0.272) - 0.130 \ (\pm 0.082) \ X1 + 2.499 \ (\pm 1.098) \ \pi_{\rm p} - 2.241 \ (\pm 1.378) \ (\pi_{\rm p})^2 - 0.433 \ (\pm 0.202) \ \pi_{\rm m} \ (3) \end{split}$$

where n = 20, r = 0.798, s = 0.2793, and F = 6.561.

The coefficients of X1 term meant that, for the same compound, its herbicidal activity against *B. campestris* was about 1.3 times that against *E. crus-galli*. The coefficients of the $(\pi_p)^2$ and π_p terms also meant that when the hydrophobic parameter (π_p) for R⁴ was about 0.56, the selectivity for inhibiting the seedling growth of *E. crus-galli* was the highest. The intercorrelation of variable was given in **Table 10**, and the

Figure 4. Relationship between observed and calculated activity by eq 3.

Table 10. Correlation Matrix of the Parameters Used in QSAR Study

	X1 ^{obs}	$\pi_{ m p}$	$(\pi_{\rm p})^2$	$\pi_{ extsf{m}}$
X1 ^{obs}	1.000			
$\pi_{ t D}$	-0.010	1.000		
$(\pi_p)^2$	-0.011	0.980	1.000	
$\pi_{\sf m}$	-0.302	-0.289	-0.392	1.000

calculated activities for them by eq 3 were in good agreement with the observed activity (**Table 10** and **Figure 4**).

In summary, we further extended the study of SAR of pyrazolo[5,1-*d*][1,2,3,5]tetrazin-4(3*H*)ones and gained insight about the pharmacophore through physicochemical-based QSAR study. The herbicidal activity in the rape root test for compound **C** was mainly affected by the MR for R¹, Taft (Es_o) for R² or R⁶, Verloop's sterimol (L_m) for R³ or R⁵, and electronic parameters (Hammett's constants, σ_p) for R⁴. When MR was about 0.95, the compound showed the highest herbicidal activity and for the di-meta substituents (R³ and R⁵) at the benzene ring, their herbicidal activity was mainly affected by the substituent with higher Verloop's sterimol (L_m) parameter value.

The herbicidal activity in the barnyard grass cup test for compound **C** was mainly related with the substituents' hydrophobic parameter. When the other conditions were the same and the hydrophobic parameters (π) for R¹ and R⁴ were 0.72 and 0.68, respectively (eq 2), the corresponding compounds had the highest herbicidal activity. In general, these compounds

showed greater herbicidal activity toward *B. campestris* than *E. crus-galli*.

LITERATURE CITED

- (1) Barraja, P.; Diana, P.; Lauria, A.; Montalbano, A.; Almerico, A. M.; Dattolo, G.; Cirrincione, G. Synthesis and antiproliferative activity of [1,2,3,5]tetrazino[5,4-a]indoles, a new class of azolotetrazinones. *Biol. Med. Chem.* **2004**, *13* (2), 295–300.
- (2) Diana, P.; Barraja, P.; Lauria, A.; Almerico, A. M.; Dattolo, G.; Cirrincione, G. Pyrrolo[2,1-d][1,2,3,5]tetrazines, a new class of azolotetrazines related to the antitumor drug temozolomide. *Synthesis* **1999**, *12*, 2082–2086.
- (3) Wu, Y.-C.; Zou, X.-M.; Hu, F.-Z.; Yang, H.-Z. Design and synthesis of novel sulfone- containing pyrazolo[1,5-a]pyrimidines and pyrazolo[5,1-d][1,2,3,5]tetrazine- 4(3H)-ones. *J. Heterocycl. Chem.* 2005, 42 (4), 609–613.
- (4) Hirai, K.; Uchida, A.; Ohno, R. Herbicide Classes in Development; Böger, P., Wakabayashi, K., Hirai, K., Eds.; Springer-Verlag: Berlin, Heidelberg, 2002; pp 255–274.
- (5) van de Waterbeemd, H. Introduction. In *Chemometric Methods* in *Molecular Design*; van de Waterbeemd, H., Ed.; VCH Publishers: New York, 1995; pp 1–13.
- (6) Zou, X.-M.; Cheng, Y.-H.; Ren, X.-L.; Hu, F.-Z.; Yang, H.-Z. Synthesis of some new hydrazone compounds containg pyrazolyl nucleus. *Chin. J. Org. Chem.* **2005**, *25* (5), 554–557 (in Chinese).
- (7) Du, X.-H.; Xu, X.-S.; Xu, Z.-Y. A safe and effective method for preparation of aromatic isocyanates using bis(trichloromethyl)carbonate. *Chin. J. Pestic. Sci.* 2002, *4*, 83–85 (in Chinese).
- (8) Zhu, Y.-Q.; Zou, X.-M.; Hu, F.-Z.; Yao, C.-S.; Liu, B.; Li, Y.-H.; Yang, H.-Z. Synthesis and herbicidal evaluation of novel 3-(α-hydroxy-substitutedbenzylidine) pyrrolidine-2,4-diones. *J. Agric. Food Chem.* **2005**, *53*, 9566–9570.
- (9) Hansch, C.; Leo, A.; Hoekman, D. *Exploring QSAR*; ACS Professional Reference Book; American Chemical Society: Washington, DC, 1995.

Received for review November 12, 2006. Revised manuscript received December 14, 2006. Accepted December 15, 2006. We acknowledge the support of this work by the National Key Project for Basic Research (2003CB114400), the National Natural Science Foundation of China (20372040), and the Research Foundation for the Doctoral Program of Higher Education (20050055042).

JF063271N